
JOURNAL OF APPROXIMATION THEORY 42, 193-199 (1984)

Nearby Linear Chebyshev Approximation

under Constraints*

CHARLES B. DUNHAM

Computer Science Department, University of Western Ontario,
London, Ontario N6A 5B7, Canada

Communicated by E. W. Cheney

Received February 21,1983, revised January 19, 1984

It is shown that ifI is near g, the linear family L is near the linear family
L', the domain X is near the domain Y, and the constraint set C is near the
constraint set C', a best Chebyshev approximation to I from L on X under
the constraints C is near a best Chebyshev approximation to g from L' on Y,
under the constraints C'. The same problem, without constraints, was studied
in [2J.

Any constraint on a linear approximating function L with coefficient
vector A can be formulated as A E C, C a subset of the coefficient space. We
assume henceforth that such a formulation has been made. C may depend on
the domain, basis, or function being approximated. Examples are given later.

Let W be a compact space with metric p. For Y a compact subset of W
and g E C(W), define

II glly = sup {I g(x)l: x E Y}.

Let {¢w" ¢n} be a linearly independent subset of C(Y). Let C be a subset of
the set of all possible coefficient vectors for linear approximation (defined
next). The coefficient vector A = (a p ... , an) is said to the best tolE C(W) on
Y by linear combinations of {¢p..., ¢n} under constraint C if it minimizes
III- I:i= 1 ai¢i Ily under the constraints (a 1"'" an) E C.

Examination of existence proofs for the unconstrained case shows that a
sufficient condition for existence of a best approximation is that C be
nonempty and closed. It should be noted that C is often <lependent on the
function I being approximated, so a global existence result may involve
showing that C is nonempty and closed for every IE C(W). We need a
criterion for subsets being near.

* Written on sabbatical at the University of British Columbia, Department of Mathematics,
Vancouver, B.C., Canada.
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DEFINITION. Let X, Y be nonempty compact subsets of W. Define

dist (X, Y) = sup {inf {p(x,y):y E Y}: x EX},

d(X, Y) = max {dist (X, Y), dist (Y, X)}.

For a superscript s, define

n

U(A) = I ai¢f.
i=l

Define the parameter norm

THEOREM. Let {¢l ,..., ¢n} be linearly independent on X and
II¢7 - ¢illw ...... 0, i = I,... , n. Let Ilf- fkllw ...... 0 and d(X, X k) ...... O. Let

(HI) Any accumulation point of a sequence {B k} with B k E Ck must
be in C, and

(H2) For given BE C and f> > 0, there is B 8 E C with liB - B 8
11 ~ f>

and a sequence {B k} ...... B 8
, B k E Ck.

Let A k be a best coefficient vector to fk E C( W) on X k by linear combinations
of {¢7,...,¢~} with constraint Ck. Then {A k} has an accumulation point A
and any accumulation point is best to f on X by linear combinations of
{¢w" ¢n} with constraint C.

A special case of the above theorem with no constraints, that is,
C = Ck = n-space, was obtained in [2].

Proof

Remark. This proof is a straightforward elaboration of the proof of the
corresponding result in [2].

Suppose {IIAkll} is unbounded. Then we can assume without loss of
generality that IIA k II > k. Define B k = A k/IIA k II, then IIB k II = I and {B k} has
an accumulation point B, IIBII = 1. Assume {B k} ...... B. From the linear
independence of {¢w" ¢n} on X, it follows that there exists x E X with
L(B) (x) =1= O. By continuity there exists K and f> > 0 such that

k >K, p(x, y) ~ f>.

There is a sequence {xd ...... x, X k E X k • There exists J such that for
k >J, p(x, x k ) < f>. For k> max{J, K},

ILk(B k) (xk) I ;? IL(B) (x) 1/2,



hence
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As fk is bounded on W, this implies that {lfk(xk)-Lk(Ak)(xk)I}---+ 00.

Now by (H2) there is DEC and a sequence of coefficient vectors {D k
} ---+ D

such that D k E Ck' Since A k is best

We have a contradiction and {A k} is bounded, hence it has an accumulation
point A. Assume without loss of generality that {A k} ---+ A. By (H 1), A E C.
Suppose there is B E C, c > 0 with

Ilf- L(B)llx < Ilf- L(A)llx - c.

By taking (j sufficiently small, we get

Ilf- L(Bb)llx < Ilf- L(A)llx - c

and {Bk}---+B b, BkECk by (H2).
We have

Ilfk - L k(B k)llk ---+ Ilf- L(Bb)llx

IIfk - L k(A k)llk ---+ Ilf- L(A )llx;

hence for all k sufficiently large

contradicting optimality of A k, and proving the theorem.

Remark. In the proof of the corresponding result in [2], the superscript k
on the L's in the three above formulas was incorrectly omitted.

Remark. In case C = C j = C2 = Cn = ..., hypothesis (HI, H2) are
automatically satisfied. To require that all coefficients lie in a fixed range,
say all coefficients Gi ;> 0, is such a constraint.

We now apply our theory. First consider approximation with interpolation
of function values. Let {xl,oo., x m} be a set of m distinct points of X. Let
{x~ '00" x~} E X k and {(x~ '00', x~)} ---+ {x 1'00" x m }. The interpolatory constraint
is to choose (for superscript s)

Cs = {A: U(A)(xD =fs(xD, i = I, ... , mI.

Cs is closed for all s.
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Assume that n - m other points {xm + w'" x n } of X can be chosen such
that {¢I"'" ¢n} is a Chebyshev set on {XI"'" xn}. This can always be done if
it is a Chebyshev set on X. Choose {x~+ 1'""" x~} E X k, with {(x~+ 1"'"

x~)} -> (xm + I , ... , x n ). Now let BE C be given. It is a solution to the linear
system with unknown A

L(A)(x;) = L(B)(x;), i = 1,... , n. (*)

As the matrix of the linear system is a generalized Vandermonde matrix,
which is nonsingular, B is uniquely determined by (*). Next consider the
linear system

L (k)(A k)(x7) =fk(X7),

=L(B)(x7),

i= 1,..., m,

i = m + 1,... , n.

By continuity (in the neighbourhood of a nonsingular case) of the solution of
a linear system with respect to its matrix entries and right-hand side,
{A k} -> B as k -> ex). Hypothesis (H2) is verified. To verify hypothesis (H 1),

L \A k)(x7) =fk (x7),

then {A k } -> A implies

L(A )(x;) = fix;),

i= 1,... , m,

i= 1,... , m.

Next consider restricted range approximation with unequal restraints. Let
f.J, v E C(W), f.J < v. Let f.Jk' vkE C(W), f.Jk < vk, and {f.Jd -> f.J, {vd -> v. We
have

Cs is closed for all s. We make the additional assumption

ASSUMPTION. C is nonempty and given BE C and 15 >0, there is B b

such that liB - B b II :!( 15 and

f.J(X) <L(Bb)(x) <vex), xEX.

We establish hypothesis (H2) and (HI). Let {B k
} ->B b

, then for all k
sufficiently large

Thus hypothesis (H2) is satisfied. Next let {A k} -> A, Ak E Ck' We claim

f.J(x) :!( L (A )(x) :!( v(x), xEX.
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Suppose this is false; without loss of generality suppose

,u(x) >L(A)(x) + e.

Then for all k sufficiently large and {xk } -> x we have

197

giving a contradiction. Thus hypothesis (H 1) is verified.
A case of special interest is one-sided approximation from above or below,

in which case we set one of the restraints ,u, v equal to f and drop the other
(or set it to ± 00). If there is an approximant >0, our additional assumption
is always satisfied.

The additional assumption we made may be necessary if we perturb bases,
domains of approximation, or restraints.

EXAMPLE. Let X = X k = [0, 1]. Let ,u = ° and v = +00. Let ~1(X) = x
and ~~(x) = x - (11k). The only multiple of ~~ satisfying the constraint is the
zero multiple.

EXAMPLE. Let X = [0, 1] and X k = [ - 11k, 11. Let ,u = °and v = +00.

Let ~I(X) = ~~(x) = x. The only approximation satisfying the constraint on
X k is the zero approximation.

EXAMPLE. Let X=Xk =[O,I] and ~1(X)=~~(X)=X2. Let ,u=0 and
,uk = xlk. Let v = +00. 0 is in C, but Ck is empty.

An extension of restricted range approximation is approximation with one
or several derivatives of the approximation having restricted ranges, say

jEJ.

The additional assumption in this case is that C is nonempty and given
BE C and ~ > 0, there is B 8 with liB _B 8

11 < ~ and

,uj <L (j)(B 8
) < vj

, j E J.

The perturbation result is proven as for the ordinary restricted range
problem. Monotone approximation (treated next) is often converted to
L'(A) ~ 0 (~O) and convex approximation (treated shortly) is often
converted to L" (A) ~ O.

In the case we require L (j) (A) ~ 0 for a single j, the additional hypothesis
is satisfied if there exists D such that L (j)(D) >°on an open set containing
X.

Another possible constraint in real approximation on subsets of the real
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line is that approximations be monotone increasing (decreasing). A general
perturbation result is not possible for this constraint if bases or domains of
approximation are allowed to vary.

EXAMPLE. Let X=Xk= [-1, 1) and f(x) =fk(X) =X. Let ¢l=¢~= 1.
Let ¢2(X) = x and {¢~} be a sequence of nonmonotone functions converging
uniformly to ¢2' The approximation ¢2 is equal to f and therefore uniquely
best among linear combinations of {¢t, ¢2}' As only the constants are
monotone among linear combinations of {¢~, ¢~}, the best monotone approx
imation to f by these must be the best constant approximation, namely zero.

EXAMPLE. LetX=[O,l! andXk = [-l/k, 1). Letf(x)=fk(x)=2x-1.
Let ¢1 = 1 and ¢2(X) = x 2. All approximations are monotone on X, but only
constants are monotone on Xk. By the classical theory of approximation by
a Haar subspace on an interval, L(A *) best on X implies L(A *) is unique
andf - L(A *, .) alternates twice on [0, 1) with amplitude >0. Let L k(A k) be
a best constant approximation to f on X k, then f - L k(A k) alternates once
and is monotone.

If we restrict our attention to fixed bases and approximations on subsets
(i.e., X k C X), a perturbation result holds. Assume the constraint is that
approximants be monotone increasing on the domain of approximation.

Let {A k} be a sequence of coefficient vectors such that L(A \ .) is
monotone on X k and {A k} -t A. Suppose L(A, .) is not monotone on X, then
there is x<y with L(A)(x»L(A)(y)-e. Let {xd-tx, xkEXk and
{Yd -t Y, Yk E X k. Then for all k sufficiently large, L(Ak)(xk) >
L(A k)(Yk) - e/2 and we have a contradiction. Hence hypothesis (H 1) holds.
Next let L(B) be monotone on X, then L(B) is monotone on any subset and
hypothesis (H2) holds. We can, therefore, apply our generalized perturbation
result. A generalization of the constraint is being comonotone [1) and the
above result generalizes.

If {¢ 1, ... , ¢n} are monotone increasing and a i ~ °for i = 1,..., n, the linear
combination L(A) is monotone increasing. Thus if bases are monotone, we
might replace the monotonicity constraint by the stronger constraint a i ~ 0,
which leads to a simple perturbation theory by a remark preceding examples
of constraints.

A result related to the main result of this paper is given in Appendix A of
the dissertation of Levasseur [6).
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